Slack for (A)synchronous Course Communication

Contributing author Albert Y. Kim is an assistant professor of statistical & data sciences. He is a co-author of the fivethirtyeight R package and ModernDive, an online textbook for introductory data science and statistics. His research interests include spatial epidemiology and model assessment and selection methods for forest ecology. Previously, Albert worked in the Search Ads Metrics Team at Google Inc. as well as at Reed, Middlebury and Amherst colleges. You can follow him on Twitter @rudeboybert.

Contributing author R. Jordan Crouser is an Assistant Professor of Computer Science at Smith College. He is published in the areas of visualization theory, human-computer interaction, educational technology, visual analytics systems and human computation. For more information, visit his faculty page.

Contributing author Benjamin S. Baumer is an assistant professor in the Statistical & Data Sciences program at Smith College. His research interests include sports analytics, data science, statistics and data science education, statistical computing, and network science. For more information, visit his faculty page.

You might have heard of Slack before. But what is it? Is it email? Is it a chat room? Slack describes their flagship product as a “collaboration hub that can replace email to help you and your team work together seamlessly.” In this blogpost, we’ll describe how we’ve been using Slack for asynchronous course communication, as opposed to the synchronous course communications afforded by Zoom and other remote conferencing platforms.

Why do we stress (a)synchronous? The brick-and-mortar constraint of having everyone working at the same time is unworkable under the unfolding COVID-19 pandemic. Across the world, support staff, faculty, and students have suddenly been forced to convert to a remote learning model of education. In order for this model to be successful, flexibility is needed to ensure equitable learning experiences with respect to differences in time zones, suitability of student learning environments, internet access, and many other factors. In order to ensure this flexibility, many instructors are recognizing that some portion of their courses must be delivered in an asynchronous fashion, on top of the synchronous nature of regular lecture and meeting times. 

Before we discuss how we’ve been using Slack, we must explain how Slack is organized.

How is Slack organized?

Slack is organized into workspaces, which loosely correspond to a “team” of individuals (such as a research or special interest group). In our case, this will be an individual course. When using Slack from the Desktop or Mobile app, a list of your workspaces appears in the left-hand vertical menu bar. For example, of the 8 workspaces highlighted in red, we are currently viewing the “220” course workspace:

Within each workspace are channels (identified with hashtags), highlighted here in blue. You can think of channels as forums corresponding to topics. In this example, we have #general (announcements), #questions, and several others. Different stakeholders can join each channel, and channels can be designated public or private as appropriate. Note how the #problem_sets channel has a lock icon, indicating that it is private (to just instructors and graders).

Additionally, within each workspace are direct messages (DMs), highlighted in green. You can think of DMs as group text messages. Unlike with channels, people cannot later “join” these conversations.

What are the benefits of Slack?

Slack’s primary benefit is centralization and organization of communications, which helps to minimize inefficient context switching:

For example, if we want to ignore messages related to the 220 course and focus our attention on the 293 course, we can do so easily. This inherent compartmentalization of communications relating to courses is especially helpful when managing asynchronous communication across multiple courses, the challenges of which have been amplified during the recent outbreak of COVID-19.

Second, Slack facilitates the posing and answering of student questions via channels dedicated to discussion boards. This is a welcome feature of Slack given the importance of (a)synchronous communications in light of COVID-19.

Note that Slack is certainly not the only platform that has such functionality; other platforms include Moodle, Piazza, and Discord

Third, the benefits of Slack increase not only as the number of team members grows, but also as the number of distinct groups of team members grows. For example, this semester’s two sections of Smith College’s SDS/MTH 220 Introduction to Probability and Statistics have 79 students who form 31 term project groups, 2 instructors, 2 lab instructors, 2 graders, and 2 in-class teaching assistants. By carefully constructing both private and public channels and direct messages, we can  localize communications in their appropriate destinations. This is critical at a time where we can’t meet in person, nor can we easily meet at the same time.

Fourth, the more casual nature of Slack interactions versus email reduces instructor/student barriers. For example, less time can be spent choosing appropriate email greetings and signoffs. Additionally, Slack’s use of newer modalities of communication like emojis and GIFs can further facilitate expression at a time when maintaining open communication is paramount.

Other benefits of Slack include (1) seamless transition between Desktop and Mobile interfaces; (2) a growing ecosystem of 3rd party applications to integrate with platforms such as Zoom, GitHub, PollEverywhere, Google Drive, and Dropbox; and (3) unlike Moodle or Piazza, Slack is widely used in industry. While we won’t argue that Slack is a skill, familiarity with it certainly won’t hurt students as they enter the workplace.                   

What are some pitfalls of Slack?

As with any communication platform, Slack has its share of potential pitfalls:

  1. There are cognitive costs associated with switching to Slack-based course communication, and student buy-in can vary depending on (1) general comfort with technology and (2) the use of Slack within other courses at your institution or department.
  2. Notifications settings really matter: students who only use Slack via their browser often miss messages sent between lectures if their email notifications aren’t set. Students who use the Desktop or Mobile applications encounter this issue far less often, but this does require installation of these interfaces.
  3. Since Slack was designed for tech companies rather than for education, it is consequently not FERPA compliant. Thus, certain sensitive communications should not take place on Slack. 
  4. While Slack offers a “freemium” version, it caps access to the most recent 10,000 messages and 5GB of file storage. To exceed these caps, monthly per user fees must be paid. 

When to make the switch

Should you switch to Slack right now (during the COVID-19 pandemic)? Our answer: if you have an existing method that gets the job done, probably not. Switching your communication tool amid the stress currently facing staff, faculty, and students may cause more harm than good. However, you may want to consider the following reasons we think you should use Slack in future courses: 

  • Do you prefer having your communications centralized and compartmentalized?
  • Are there multiple groups to coordinate within your team: instructors, teaching assistants, graders, students, and various groupings thereof?
  • Are you looking for ways to make communication between students and faculty feel more accessible?
  • Does your course involve collaborating on code, either directly or via GitHub?
  • Do other instructors in your department or institution use Slack?
  • Do you hate email?

As your answers to these questions tend toward yes, the case for Slack gets stronger. At our institution, we have been vocal advocates of using Slack in the classroom. The increased importance of (a)synchronous communication brought on by the COVID-19 pandemic has further reinforced our belief in the benefits that Slack can provide for course communication.

Resources

As with any large change in workflow, getting started is often the hardest part. To this end, R. Jordan Crouser has created the following quickstart guide for Slack: Getting Started with Slack for (a)synchronous course-based communication. 

Additionally, for a live demonstration of Slack and many of its useful features, check out this video. The content of much of this post is based on Albert Y. Kim’s 2019 Symposium on Data Science and Statistics talk Using Slack for Communication and Collaboration in the Classroom.

Adapting Statistics Instruction for an Online Environment in the Wake of COVID-19

Contributing author Christopher Engledowl is an Assistant Professor of Mathematics Education and Quantitative Research Methods at New Mexico State University.

The world is currently experiencing unprecedented forced movement from face-to-face interaction to a completely virtual form of interaction. Higher education institutions have quickly made sweeping policy decisions that have, overnight, overhauled the classroom learning environment. These decisions have resulted in many people questioning the kinds of quality that can be expected—especially from instructors who have never taught an online course Simultaneously, many organizations have expanded the capacity of their digital platforms to accommodate the insurgence of people making use of their products for teaching and learning.

For instance, Discord—an application with free voice and text chat originally designed for gamers to interact in real time with one another, read more here—recently increased the capacity for live streaming for up to 50 people for the sole purpose of making it more amenable to online instruction. They also published a blog post about how to use Discord for instructional purposes, including a special pre-organized setup to help streamline the interface for new users.

Just as many others have recently experienced, my institution has recently dictated the movement of face-to-face courses to an online setting in order to practice social distancing and follow government recommendations designed to slow the spread of COVID-19. I am currently in the process of transitioning my face-to-face courses to online format, and I am making use of Discord. In this article, I will showcase how I made use of Discord in a prior online course, what I observed about student interactions, and what students reported about their experiences. I believe Discord can be an effective, and easy to implement, tool for creating quality discourse.

Some Context: Advanced Statistics in College of Education

In the Summer of 2019, I taught a required doctoral level course for an online-only program in a College of Education called Advanced Statistics. This course is comparable to a typical undergraduate level introductory course in statistics. In the pre-requisite course, students are exposed to basic descriptive statistics and visualizations, leading up to a two-sample t-test. Advanced Statistics extends this learning to include ANOVA, ANCOVA, and simple linear regression. The student population ranges in age from 25 to 50, whose only experience with statistics is the prerequisite course, where I have had students tell me that they had never seen a boxplot before! The course is application-based and ends with a small-scale project where students explore their own research question using either their own data, or data from the 2012 PISA—which is used throughout the course.

Because it was an online course, in addition to including the kinds of instructor presence and interaction that have been discussed by John Haubrick on this blog, I also was asking myself: How do I emulate the important student-to-student interaction that would occur in a synchronous, face-to-face setting, as suggested by the Guidelines for Assessment and Instruction in Statistics Education (GAISE) College Report?

Using Discord to Promote Quality Interaction

What is Discord?

Discord is an application designed with both text and voice chat “channels” within a “server.” The server is the larger space that only invited members can interact within, and it is composed of channels where members chat. Discord text chat channels are free-flowing chat streams. This was highly appealing to me because threaded comments can have the side-effect of conversations only existing in small groups, without ever making their way into the larger classroom discussion. Moreover, because Discord has integrated tagging (using the @ symbol), it makes it easy for everyone to see who is having side conversations, while also allowing others to enter into that same conversation—thus promoting them to the whole group level.

How Can it Promote Discussion?

In the Advanced Statistics course, because the majority of students were teachers and administrators in K–12 schools, this course was managed largely asynchronously. I used Discord as the central place for managing the classroom environment. I regularly posted links to videos on my YouTube Channel and I also posted announcements for the few times I conducted livestreams using a free application called Twitch. Thus, Discord was used for nearly all student-student and student-instructor interaction. To encourage students to get to know one another more, and make discussions feel more authentic, I set up a #general chat channel for them to discuss anything they wanted to, where I would not be monitoring unless I was tagged. I also created a #current-music-jam and #current-reading-interest channel. Many students made use of these channels at different points, and I also shared my own reading and music interests.

The course-specific channels I created to align with course learning goals were #roller-coaster-tycoon (to discuss assignments related to this dataset), #spss-discussion, #research-interests, and #p-values. Channels are very easy to add at a moment’s notice, but these seem to have sufficed for the course and were meant to work toward the GAISE recommendations to “foster active learning” and to “use technology to explore concepts and analyze data” (p. 3). It also supported students as we worked toward the GAISE goals regarding the investigative process, understanding statistical models, and understanding inference (p. 6). Discord supported these goals by providing a space where students could engage in productive discourse with one another to deepen their knowledge. For instance, as can be seen in the two screenshots below, students frequently inserted screenshots of output they were trying to make sense of in order to crowd source whether their interpretations were correct. I largely stayed out of these conversations, and found that many students would enter into the conversations, resulting in dialogic interactions that everyone learned from. Sometimes these conversations would head in an unproductive direction, but because I could see the entire conversation—unlike if it was occurring outside of class or in a group discussion in a face-to-face class where it might be difficult to hear what occurred—I could point directly back to the conversation using tagging—or even just tagging @everyone—or a screenshot and help steer students in a productive direction. This cannot be overstated: Being able to see entire conversations in this way is an incredible advantage over face-to-face discussions. It allows, in a sense, an omniscient perspective—one that everyone in the entire class also enjoys the benefits of.

How Can it Improve Instruction?

On the administrative side of teaching, to encourage participation, I evaluated both the quantity and quality of contributions using a simple rubric. Searching for a student’s username produces a list of every contribution they have made, along with a timestamp and the place in the chat stream where the comment was made—faded in the background. You can also filter contributions by channel. To see the contributions in the context of where they occurred in the chat, a simple click on the background reveals them. This process was very efficient, taking about 2-3 minutes per student.

What Did Students Say About Discord?

In an anonymous poll, I asked students: How useful did you find Discord? On a scale of 1 (Not At All) to 5 (Very Useful), 54% rated it a 5 and 23% rated it a 4. No one rated it below a 3. A follow up item asked students what they liked about Discord, and many responses were things like, “it is very interactive and we’re free to ask any questions we need at any given time” and “nice interactions that you could follow.” When asked what they did not like about Discord, students described issues that would exist even if the courses were face-to-face (e.g., “I couldn’t work ahead because I had to be involved in discussions”). Other responses were simple complaints (e.g., “Another platform”).

Perhaps even more revealing were the comments students gave when asked to compare ways of interacting in the Canvas learning management platform vs. Discord. Many responses included statements such as “Discord is best for discussion in real time” or “Discord seemed easier to follow than discussions on Canvas (and I teach online using Canvas)….seems less formal and more able to operate like a texting stream.” I will leave with this last revealing comment. When discussion turns into “I’ll do it just for the grade,” we have lost a major opportunity to promote deep learning through social interaction:

Discord is best for discussion in real time. Canvas is ok, more for turning in work and such—Posting discussion board responses and getting feedback, it is more assignment based.

Hello, is anyone there? Instructor presence in an online statistics course

Contributing author John Haubrick is an instructional designer and assistant teaching professor for the Penn State Department of Statistics where he supports the teaching and design of the online statistics courses.

With the prevalence of online chat bots and robocalls, we sometimes find ourselves asking: “Are you a machine or a real person?” Students can also experience this when taking an online course with an “absent” instructor. Instructor presence in an online course has been cited in research as a major influence of student satisfaction and engagement, which may impact their ability to learn the course content (e.g., Ladyshewsky, 2013; Gray and DiLoreto, 2016). So what can we do to “show up” to class as an online statistics instructor?

The Community of Inquiry (CoI) framework (Garrison, Anderson, & Archer,  2000) is one model used to classify the types of instructor presence for a rich educational experience. The framework is based on three types of presence: Social, Teaching, and Cognitive. You can find a large collection of publications and resources related to the CoI framework on the CoI website. In the model, the entire educational experience is the result of the interrelationship (or overlap) of the social, teaching and cognitive presence. Let’s explore each presence and how they might apply to an online statistics course.

Social Presence

Social presence shows that you are a real human teaching the students. Examples of incorporating social presence in an online course include…

Start of the course

  • Post an introductory video to put your face and voice with a name. Share your interests, hobbies, research, and the keys to success in your course.
  • Use an introduction forum to allow everyone to share a thing or two about themselves. Make the prompts interesting and provide various format options. Educational social media platforms like Flipgrid and Yammer provide text, audio, and video options beyond the standard text based discussion boards.

Throughout the course

Teaching Presence

Teaching presence refers to the technical set-up and design of the learning management system and the design of the learning materials that the students engage with (e.g., content, activities, assessments). Examples of integrating Teaching Presence in an online course include…

  • Provide clear directions on how to get started the first time they enter the course.
  • Have contact information, resources, and links for finding help and support. This includes technical support, resources for statistics software, and who to contact (e.g., TAs, instructors, other) and when.
  • Create navigation through the course that is clear and optimized for efficiency.
  • Make expectations and directions clear, thorough, and concise on all learning materials.
  • Offer timely, constructive, and frequent feedback in a variety of formats (text, audio, video). Your LMS might offer built-in or integrated media tools, such as Zoom, VoiceThread, Kaltura or YouTube.  

Cognitive Presence

The cognitive presence determines how students create meaning of the course content. Through activities, assignments, and discussions, the instructor can challenge and lead students through the content. Examples of creating Cognitive Presence in an online course include…

  • Create a reflection journal where students can make their thinking visible. For example…
    • You could set up a 3-2-1 post, where they post: 3 key concepts of the lesson, 2 ways in which they can apply the concept to their life, work, or future career, and 1 challenge or difficulty they are still having.
  • Provide lesson overview videos connecting the new content to prior knowledge or previous lessons. Demonstrate how the new content fits into the big picture of the course (or program). 
  • Have students “make sense” of output from statistical software or results from a research article by asking questions about conceptual understanding rather than procedural knowledge.
  • Have students spot errors in worked examples that might include incorrect calculations, equations, software code, software output, or hypothesis testing conclusions. 

The examples provided are just a sample of the myriad of options available for creating presence in an online course. However, THE most important thing is to show up! Your presence is important. Presence can create a positive learning community that will not only motivate your learners, but you as well.

__________________________________________

References:

Ladyshewsky, Richard K. “Instructor Presence in Online Courses and Student Satisfaction.” International Journal for the Scholarship of Teaching and Learning, vol. 7, no. 1, Jan. 2013. DOI.org (Crossref), doi:10.20429/ijsotl.2013.070113.

Garrison, D. Randy, et al. Critical Inquiry in a Text-Based Environment: Computer Conferencing in Higher Education. 1999. Semantic Scholar, doi:10.1016/S1096-7516(00)00016-6.

Gray, Julie A., and Melanie DiLoreto. “The Effects of Student Engagement, Student Satisfaction, and Perceived Learning in Online Learning Environments.” International Journal of Educational Leadership Preparation, vol. 11, no. 1, May 2016. ERIC, https://eric.ed.gov/?id=EJ1103654.