Developing Statisticians in Intermediate Statistics Courses Through an Applied Project

Contributing author Krista Varanyak is a lecturer at the University of Virginia and an Ignite Scholar.

The field of statistics education tends to focus heavily on introductory courses: How can we engage students who typically struggle in math-based courses? How can we develop statistical consumers? How can we prepare students to be successful beyond introductory courses? However, there is not much literature or resources shared about the teaching of intermediate courses. In many cases, the intermediate courses are designed for students working towards a statistics degree who are learning to be statistical producers. Overall, the goal of these courses, and the statistics major as a whole, is to produce students who will enter the workforce as statisticians. Therefore, it is imperative that students in these intermediate courses develop fundamental practical and interpersonal skills that are required to be a working statistician. Some of these skills include: comparing various analysis techniques to select the appropriate procedure, learning a new concept independently, applying the technique on data using a statistical software, and communicating findings in a formal report either written or orally.

Continue reading “Developing Statisticians in Intermediate Statistics Courses Through an Applied Project”

Visual Inference: Using Sesame Street Logic to Introduce Key Statistical Ideas

As outlined by Cobb (2007), most introductory statistics books teach classical hypothesis tests as

  1. formulating null and alternative hypotheses, 
  2. calculating a test statistic from the observed data, 
  3. comparing the test statistic to a reference (null) distribution, and 
  4. deriving a p-value on which a conclusion is based.

This is still true for the first course, even after the 2016 GAISE guidelines were adapted to include normal- and simulation-based methods. Further, most textbooks attempt to carefully talk through the logic of hypothesis testing, perhaps showing a static example of hypothetical samples that go into the reference distribution. Applets, such as StatKey and the Rossman Chance ISI applets, take this a step further, allowing students to gradually create these simulated reference distributions in an effort to build student intuition and understanding. While these are fantastic tools, I have found that many students still struggle to understand what the purpose of a reference distribution is and the overarching logic of testing. To remedy this, I have been using visual inference to introduce statistical testing, where “plots take on the role of test statistics, and human cognition the role of statistical tests” (Buja et al., 2009). In this process, I continually encourage students to apply Sesame Street logic: which one of these is not like the other? By using this alternative approach that focuses on visual displays over numerical summaries, I have been pleased with the improvement in student understanding, so I thought I would share the idea with the community.

Continue reading “Visual Inference: Using Sesame Street Logic to Introduce Key Statistical Ideas”

How Do We Encourage “Productive Struggle” in Large Classes?

Contributing author Catherine Case is a lecturer at the University of Georgia and the lesson plan editor for Statistics Teacher.

This post is really inspired by a plenary talk given by Jim Stigler at USCOTS 2015. He’s a psychologist at UCLA, and in his USCOTS talk, he emphasized the idea of productive struggle. He talked about different teaching cultures around the world, and how American classrooms often feature “quick and snappy” lessons as opposed to “slow and sticky” lessons, despite the fact that making the process of learning harder can actually lead to deeper, longer-lasting understanding.

His ideas really challenged me, because I often teach fairly large classes (120 – 140 students per section), and nowhere is “quick and snappy” more highly valued than in a large lecture. There’s definitely tension in large classes between efficiency and productive struggle. 

Continue reading “How Do We Encourage “Productive Struggle” in Large Classes?”